Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Rev. Fac. Med. UNAM ; 66(3): 8-26, may.-jun. 2023. tab, graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1514811

ABSTRACT

Resumen El opio y sus derivados, y recientemente los opioides, han acompañado a la humanidad desde las civilizaciones más antiguas hasta la actualidad. Sus efectos analgésicos, hipnóticos y placenteros no pasaron desapercibidos para los antiguos, los consideraron de utilidad médica y beneficiosa para el estado de ánimo. Hoy en día no existe otro tipo de medicamentos que puedan tratar el dolor más intenso tan eficientemente como estos potentes analgésicos. Sin embargo, el uso médico y recreativo de los opiáceos y los opioides conlleva riesgos para la salud, como la tolerancia, la hiperalgesia y la adicción. Actualmente, además de ser indiscutiblemente el tratamiento médico más poderoso para mitigar el sufrimiento ocasionado por el dolor, se ha convertido también en un problema de salud pública debido a la alta cantidad de personas con trastorno por uso de opioides y por las muertes ocasionadas por sobredosis. En esta revisión se hará mención de las bondades de los opiáceos y opioides, y también de los efectos no deseados que estos producen.


Abstract Opium and its derivatives, and recently the opioids have accompanied the humankind since the ancient civilizations to the present day. Its analgesic, hypnotic and pleasant effects did not go unnoticed by ancient people, which considered most of these effects of medical utility and noticed that they had remarkable mood benefits. Currently, there are no other kind of drugs that can palliate intense pain as efficiently as these powerful analgesics. However, the medical and recreational use of opiates and opioids may carry health risks such as tolerance, hyperalgesia, and addiction. Nowadays, in addition to being indisputably the most powerful medical treatment to alleviate the suffering caused by pain, it has also become a public health problem due to the high number of people with opioid use disorder that have facilitated deaths caused by opioids overdose. In this review we will discuss the medical benefits of opiates and opioids, as much as the unwanted effects they produce.

2.
Psychol. av. discip ; 15(1): 83-93, ene.-jun. 2021. graf
Article in Spanish | LILACS | ID: biblio-1356673

ABSTRACT

Resumen La proporción de usuarios de una sustancia de abuso que desarrolla problemas con su consumo (abuso o dependencia) representa solo una parte de esta población. En México, el 63.8 % de la población consume alcohol, y de ellos, el 15 % desarrolla algún trastorno por consumo de alcohol (TCA). Se ha observado una relación causal entre el trastorno por consumo de sustancias (TCS) y la falta de autocontrol. Es decir, satisfacer necesidades de manera impulsiva, v. gr., consumir una droga sin evaluar las consecuencias. La corteza prefrontal (CPF) es el principal sustrato neuroanatómico del autocontrol y característicamente la CPF alcanza la madurez alrededor de los 30 años, sugieriendo que el autocontrol se alcanza despues de esta edad. Se ha propuesto que todos los grupos etarios que no han consolidado el uso del autocontrol son vulnerables al TCS. Similarmente ocurre con aquellos sujetos que por algún trastorno psiquiátrico tienen como característica una limitada función prefrontal. La CPF coordina una red subcortical cuya interacción depende de distintos sistemas de neurotransmisión, entre ellos, endocanabinoides. En este trabajo se revisó la función de la CPF y del sistema de endocanabinoides (sECB) y su relación con la vulnerabilidad a la adicción y otros trastornos psiquiátricos.


Abstract The proportion of users of a substance of abuse who develop problems with its use (abuse or dependence) represents only a part of this population. In Mexico, 63.8% of the population consumes alcohol and only 15% of them develop an alcohol use disorder (AUD). A causal relation has been observed between substance use disorder (SUD) and the lack of self-control. Which means, satisfying needs in an impulsive way, v.gr. using a drug, without considering the consequences. The prefrontal cortex (PFC) is the main neuroanatomical substrate of self-control and characteristically reaches maturity around the age of 30, suggesting that self-control is reached after this age. We suggest that all age groups that have not consolidated the use of self-control are vulnerable to SUD. The same occurs with those who, due to a psychiatric disorder, have the characteristic of a limited prefrontal function. The PFC coordinates a subcortical network whose interaction depends on different neurotransmission systems among them, the endocannabinoids system (ECBs). In this work we will review the function of the PFC, the ECBs and its relationship with vulnerability to addiction and other psychiatric disorders.


Subject(s)
Alcohol Drinking , Substance-Related Disorders , Impulsive Behavior , Synaptic Transmission , Endocannabinoids , Ethanol , Alcoholism , Self-Control , Mental Disorders
3.
Rev. Fac. Med. UNAM ; 62(6): 6-23, nov.-dic. 2019. graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1149586

ABSTRACT

Resumen A pesar de que el uso de marihuana se considera ilegal en la mayoría de los países del mundo, es una de las drogas más utilizadas. El 8,6% de la población mexicana, entre 12 y 65 años, ha probado la marihuana alguna vez (2017). Este porcentaje ha aumentado significativamente en los últimos años. Casos fatales asociados con el consumo de cannabis no se documentaron durante mucho tiempo; sin embargo, recientemente se ha informado de muertes causada por un síndrome de hiperémesis de cannabis (CHS) y muerte por automutilación. Si bien se ha documentado que la marihuana sintetiza sustancias activas con potenciales propiedades terapéuticas, en la actualidad, el mayor uso de la marihuana en nuestro país y en el mundo es recreativo. Esta revisión analiza las consecuencias del uso recreativo de marihuana, el contexto social y de salud con respecto a la legalización y los posibles usos terapéuticos de compuestos extraídos de la planta, de acuerdo a estudios reportados en la literatura científica. La contribución que hacemos es alertar sobre el impacto negativo en la salud del uso recreativo de marihuana y la urgencia de favorecer la investigación sobre sus efectos en el cerebro. Asimismo, identificar los principios activos que tengan potencial para el uso terapéutico.


Abstract Despite the fact that the use of marihuana is illegal in most countries of the world, it still is one of the most commonly used drugs worldwide. 8.6% of the Mexican population, between 12-65 years old, has smoked marihuana at least once in their lifetime (2017). There has been a significant increase in the number of consumers in the last few years. Fatal cases associated with cannabis use had not been recognized for a long time, however, lately, deaths due to a cannabis hyperemesis syndrome (CHS) and deaths from self-mutilation have been reported. Although marihuana synthesizes several active substances with potential therapeutic properties, nowadays, the greatest use of marihuana in our country and in the world is recreational. This review discusses the consequences of using marihuana for recreational use, the social and health contexts regarding legalization and potential therapeutic uses of compounds isolated from the plant based on the scientific literature. Our contribution is to warn people about the potential negative impact on the health of recreational use marihuana and the urgency of supporting the research of its effects on the brain. Similarly, we aim to identify the active principles with potential therapeutic use.

4.
Salud ment ; 40(3): 119-128, May.-Jun. 2017. tab, graf
Article in English | LILACS | ID: biblio-903721

ABSTRACT

Abstract Background The endocannabinoid system (eCBs) is one of the modulatory systems widely expressed in the brain. It consists of receptors expressed in the cytoplasmic (CB1 and CB2), the mitochondrial membrane (CB1), and the endogenous ligands known as endocannabinoids, such as anandamide, 2AG and oleamide. CB1 has been found in excitatory and inhibitory neurons in the pre- and post-synaptic membranes. It is expressed in several brain areas such as the hippocampus, dorsal, and ventral striatum, amygdala and prefrontal cortex. The eCBs has been involved in the regulation of learning and memory, mood, energy balance, sleep, and drug addiction. Objective Integrate existing information about the eCBs and its role in brain function and mental health. Method Review of the information of basic and clinical relevance obtained from indexed scientific journals (PubMed/Medline, Scopus). Results Basic and clinical research on eCBs related to central nervous system function is described. Discussion and conclusion At present, the study of eCBs is of importance. The development of drugs that affect this system may be clinically useful to control different debilitating diseases. This is an area of interest to the scientific community and health care providers.


Resumen Antecedentes El sistema de endocannabinoides (eCBs) es uno de los sistemas moduladores más ampliamente expresados en el cerebro. Se compone de receptores expresados en la membrana citoplasmática (CB1 y CB2) y en la membrana mitocondrial (CB1) y ligandos endógenos conocidos como endocannabinoides, como anandamida, 2AG y oleamida. El CB1 se ha encontrado en neuronas excitadoras e inhibidoras, en las membranas pre- y pos-sináptica, en varias áreas cerebrales como el hipocampo, el estriado dorsal y ventral, y en la amígdala y la corteza prefrontal. El eCBs se ha relacionado con la regulación del aprendizaje y la memoria, del estado afectivo, del equilibrio energético, del sueño y del proceso de la adicción a las drogas. Objetivo Integrar la información existente sobre el eCBs y su función sobre los procesos cerebrales y la salud mental. Método Revisión de la información de relevancia básica y clínica obtenida de revistas científicas indexadas (PubMed/Medline, Scopus). Resultados Se describe de manera concisa información de interés básico y clínico de la investigación sobre el eCBs relacionada con la función del sistema nervioso central. Discusión y conclusión En la actualidad, el estudio del eCBs es indispensable debido a su potencial terapéutico. El desarrollo de fármacos que afecten este sistema puede ser clínicamente útil para controlar diferentes enfermedades debilitantes. Ésta es un área de interés para la comunidad científica y los proveedores de salud.

5.
Rev. Fac. Med. UNAM ; 60(1): 6-16, ene.-feb. 2017. graf
Article in Spanish | LILACS | ID: biblio-896838

ABSTRACT

Resumen La proporción de usuarios de una droga de abuso que desarrolla dependencia sólo representa una parte de ellos. Es decir, hay una proporción de usuarios que no presentan un trastorno por consumo de sustancias (TCS). Por ejemplo, en Mexico sólo el 15% de quienes consumen alcohol desarrollan un trastorno por consumo de alcohol (ТСА). Este 15% sugiere una vulnerabilidad en esta población, por lo que determinar los mecanismos que predisponen a estos sujetos a la adicción es indispensable para la prevención о para la rehabilitación del TCS. Se ha sugerido la participación de factores genéticos y medioambientales en el desarrollo de dicha vulnerabilidad al TCS. Por ejemplo, se ha demostrado que los sujetos que son psicópatas o sociópatas у que son agresivos, que presentan falta de atención y son impulsivos, entre otras características clínicas, presentan comorbilidad con el abuso y dependencia a sustancias. Por otro lado, se ha observado que existe una relación entre las experiencias adversas en los primeros años de vida y el consumo de sustancias de abuso. En estudios preclínicos, hemos demostrado que las ratas privadas de cuidado materno en los días posnatales 2 al 16 (DPN2-DPN16), al llegar a la edad adulta (DPN90) consumen más alcohol que las que han recibido cuidado materno todo el tiempo. Además, presentan una desregulación en la expresión de los receptores para canabinoides del tipo ו (CB1R) en algunas zonas del cerebro, por ejemplo, el núcleo accumbens y la corteza prefrontal. En breve, podríamos suponer que un sujeto es vulnerable a tener una adicción si nace psicópata o desarrolla una personalidad antisocial, o bien, si durante la infancia ha contendido con situaciones adversas, como son un pobre cuidado parental o el abuso verbal, fisco o sexual. Cabe señalar que estos no son los únicos factores que han sido asociados a este trastorno, pero para los fines de esta revisión, sólo discutiremos esta vulnerabilidad con base en los mecanismos epigenéticos que afectan al sistema endocanabinérgico (seCB) e interfieren con la función del sistema de inhibición de la conducta.


Abstract The proportion of drug abuse users that develop dependence does not represent the totality of users. Therefore, there is a substantial proportion of users that does not develop a substance use disorder (SUD). For example, in Mexico, only 15% of all alcohol consumers develop alcohol use disorder (AUD). Determining the mechanisms that predispose individuals to AUD or SUD is crucial for its prevention or rehabilitation. The involvement of genetic and environmental factors to the development of SUD has been suggested. For example, psychopaths or sociopaths that have a strong genetic predisposition have comorbidity with SUD. On the other hand, a relationship between adverse experiences in the early years of and substance abuse has been documented. In pre-clinical studies, we have shown that rats deprived of maternal care from postnatal day (PND)2 to PND16, and tested once they reach adulthood (PND90) consume more alcohol than those that were under materna care at all times. In addition, we observed a dysregulation in the expression of cannabinoid receptors type 1 (CBIR)in some areas of the brain, i.e. nucleus acumens and prefrontal cortex. In short, we presume that a subject who is vulnerable to addiction has either been born with a psychopathic disorder, developed an antisocial personality, experienced adverse situations such as neglected parental care, or verbal, physical or sexual abuse. These are not the only factors that have been associated with SUD, but for the purposes of this review we will discuss vulnerability based only on epigenetic mechanisms affecting the endocannabinergic system and interfering with the functioning of the behavior inhibition system.

7.
Salud ment ; 36(2): 109-113, Mar.-Apr. 2013.
Article in Spanish | LILACS-Express | LILACS | ID: lil-686004

ABSTRACT

Eating is a behavior oriented to get the energy necessary for the organism to survive and to contend with the demands of its environment. Food, besides of energy, provides structure and function, as amino acids are converted into structural or secretion proteins or enzymes. These proteins are synthesized following a strict genetic code. Variants in the genome happen frequently, but only those changes that result in a poor adaptive phenotype are well documented. There are other changes that may go unnoticed due to culture influence, and they may be seen as adaptive because they seem to favor individuals in the short-term. A child that overeats and becomes overweighed is culturally appreciated as a healthy child. However, systematic studies have shown that these feeding styles influenced by culture, in the long-term, result on an irreversible damage to the individual. Food selection also depends on the functioning of homeostatic and hedonistic systems. The homeostatic system involves the hypothalamus that includes nuclei that promote both appetite and satiety. The hedonic system is constituted by the ventral tegmental area and the nucleus accumbens. Stimulation of the ventral tegmental area induces the release of dopamine into the nucleus accumbens, making the individual to experience pleasure. This system also interacts with the hypothalamic systems that promote appetite. As it can be seen, food intake is regulated by diverse cerebral systems that are under the influence of one another. Failure in one of these systems may lead the subject to a compulsive, or defective, food intake. We have allowed media and mercantilist interests to govern our diet, instead of allowing our brain and its systems to do it. We should have psycoeducation as a priority in medicine to improve our capacity to select better quality food to eat, without compromising the pleasure of eating.


Comer es una conducta dirigida a conseguir la energía para llevar a cabo las funciones que mantienen al organismo y le permiten contender contra las demandas del medio. Debido a que nuestro organismo evolucionó dentro de un ambiente con escasez de alimentos, los genes que nos adaptaron al medio fueron los que promueven el almacenamiento y optimización de los nutrientes, así como aquellos que promueven la habilidad de generar estrategias de cacería y otras conductas orientadas a ese objetivo. Estos mecanismos fisiológicos y bioquímicos incluyen una amplia variedad de genes, desde aquellos que codifican para enzimas que almacenan el glucógeno hasta enzimas que sintetizan o degradan a los neurotransmisores. Diversos sistemas cerebrales regulan la ingestión del alimento: El homeostásico involucra al hipotálamo lateral como promotor de la ingestión de alimento por medio de neuronas orexinérgicas y MCHérgicas, al núcleo arcuato que sintetiza y libera neuropéptido Y y al péptido relacionado al gen agouti y como promotor de la saciedad a través de la POMC y del CART. Diferentes hormonas y proteínas hipotalámicas participan en la función del sistema hedónico compuesto por el área ventral tegmental y el núcleo accumbens, produciéndose un diálogo entre los sistemas homeostásico y hedónico. Otros sistemas cerebrales que participan son la amígdala y el lóbulo de la ínsula que promueven la selección de los alimentos con base en la experiencia. La corteza prefrontal participa en la preferencia por los alimentos y la toma de decisiones tales como qué, cuándo y dónde comer. Es importante reconocer que los sistemas neuroquímicos que regulan la ingestión del alimento también participan en funciones cognitivas y que la falla en estos sistemas afecta la forma en que el individuo elige su alimentación y, a su vez, el estado cognitivo del sujeto. Por lo tanto, la psicoeducación para regular los hábitos alimenticios debe ser una prioridad en el campo de la medicina.

9.
Salud ment ; 34(3): 211-218, may.-jun. 2011. ilus, tab
Article in Spanish | LILACS-Express | LILACS | ID: lil-680602

ABSTRACT

Sleep is a universal experience and a necessary ingredient to life. Young adult humans benefit from spending 8 h a day, every day, sleeping. While the function(s) of sleep is not completely understood, it is known that sleep is critical to the survival of the species. In humans, it restores alertness, helps consolidate memory and «recharge¼ cognitive abilities which are impaired at the end of the activity-phase of the cycle. Humans who do not pay their toll to sleep, for one night, for example, experience difficulties maintaining wakefulness the next day. This condition may put in danger their lives, particularly if they work in the transportation industry (i. e. taxi cabs, truck or trailers-drivers, pilots and/or operating heavy machinery among many other activities). In the past, when humans were more exposed to predators, to be sleepy in the savannah was synonymous with dying. Interestingly enough, the maladaptive strategies exhibited by a sleepy subject (which put at risk his life), are reversed by sleep. It is widely believed that sleep has a restorative function. However, what precisely is being restored during sleep remains a topic of speculation and on-going research. Sleep deprivation in humans results in cognitive deterioration and increased sleepiness, which might compromise survival as aforementioned. It is known that in rats prolonged sleep deprivation leads to death. In humans, it results in sleepiness, decreased attention, compromises memory and learning skills, and may affect motor control. The negative effects of sleep loss are reversed by recovery sleep, which may show features of delta and/or REM-sleep rebound. In this context, insomnia is a condition with known negative consequences to the health of the affected individual and frequently conveys negative effects to the family nucleus and to society in general. It has been estimated that 9% to 15% of the adult population suffers from chronic insomnia. Psychophysiologic insomnia (or primary insomnia) is likely the most prevalent type of insomnia. The patient with insomnia frequently develops an aversive response to sleep and to all aspects related to this activity. The manifestations of insomnia may include difficulty falling (and staying) asleep, frequent awakenings, early morning awakenings and/or un-refreshing quality of sleep. As a result, affected individuals frequently complain of daytime consequences such as decreased concentration, negative effects on memory (and learning), and daytime fatigue. They may also complain of headaches, fuzziness (or grogginess) and might experience manifestations of excessive sleepiness (which might represent a hazard when driving and/or operating machinery). Stress and anxiety frequently represent precipitating and/or perpetuating factors in the development of insomnia. In regards to stress, the role of the hypothalamus-pituitary-adrenal (HPA) axis in preserving homeostasis has been amply studied. The HPA axis involves the participation of peptides such as corticotropin-releasing hormone (CRH), corticotropin itself and cortisol. The autonomic nervous system activates the amygdaloid complex further enhancing the stress response. When patients are unable to control their stress response, the magnified response may be manifested as an anxiety disorder. According to the DSM-IV, the diagnosis of generalized anxiety disorder (GAD) is based on persistent symptoms of excessive anxiety and worry. Patients with GAD as well as those suffering from other anxiety disorders such as PTSD and panic attacks may manifest symptoms of insomnia. Several models of stress have been proposed to better understand these conditions. For example, prenatal stress has been suggested to increase vulnerability to life events and some reports have suggested impaired sleep among some of the animal models that have been studied. Specifically, it has been reported that rats who are deprived of maternal care suffer from dysregulation of the orexinergic system. Consequently, affected rats may have manifestations of sleep-wake dysregulation. There is more. Rats born to a low care maternal provider (which induces an early stress response) have been found to have methylated the gene that encodes the glucocorticoid receptors, which is reflected in a low expression of receptors. As a result, these animals release more corticosterone in response to stressful situations and are less efficient in managing stress. Furthermore, they have a lower expression of the CB1 receptor in several areas of the brain, thus suggesting that the systems responsible for reducing excitability of the brain (and consequently reducing the subjective sensation of fear and anxiety) are shattered. Models of insomnia evaluating the possible role of an inadequate stress-response have not been thoroughly studied. Potential pharmacologic interventions using such a theoretical framework have not been systematically studied and thus offer a venue for novel pharmacological interventions. The addition of new therapies would be particularly useful as the clinical management of patients with chronic insomnia remains a challenging area in medical practice. This despite the availability of multiple approved hypnotic medications in the physician's armamentarium. To date there is no hypnotic medication which can be considered ideal for the treatment of chronic insomnia. Issues of tolerance and dependence remain relevant concerns for those hypnotic medications, which are considered most effective in the treatment of this condition. Research identifying new compounds based on molecules whose physiologic action is to induce sleep may render safer, more efficient pharmacological interventions to treat insomnia. Following this line of thinking, we have tested the effects of endocannabinoids (eCBs). The eCBs represent a family of molecules, lipids in nature, which bind to the same receptors to which marijuana is known to bind. The active metabolite of marijuana (delta-9-tetrahydrocannabinol [THC]) is known to bind to the CB1 receptors and produce a series of effects including relaxation and sleep. Following the discovery of several eCBs by the research groups of Mechoulam and Lerner, we have tested anandamide and oleamide as sleep inducers. Results have indicated that both molecules and a third one, 2-arachidonyl glycerol, induce sleep (mainly REM sleep). In the present review insomnia is speculated to be a consequence of chronic stress. Several animal models of early stress are also discussed to better understand the role of stress in the causation of insomnia. The current limitations in the availability of ideal hypnotic medications prompt us to argue in favor of continued efforts to find additional, novel pharmacologic interventions to treat this condition. In this context, the potential use of endocannabinoid compounds is proposed as a possible new line of hypnotic medications. While eCBs have been used so far only in animal models, they have been amply successful in promoting the expression of non-REM and REM sleep. The endocannabinoid system has the potential to induce sleep and thus suggest that endocannabinoid agonists offer a new research venue for the exploration of novel pharmacologic interventions in the treatment of insomnia.


El sueño es una actividad fundamental para el bienestar y la preservación del la salud. El no dormir resulta en consecuencias potencialmente letales. Por ejemplo, ratas experimentalmente privadas de sueño total (o de sueño MOR) mueren al cabo de algunas semanas de experimentación. Asimismo, en humanos, la privación de tan solo una noche de sueño conlleva consecuencias importantes. Hipersomnolencia y disminución de las habilidades cognoscitivas son consecuencias de la privación de sueño. El individuo privado de sueño corre el riesgo de cometer errores que potencialmente pueden poner en riesgo su vida o integridad física, así como la de otros. Se ha sugerido que el sueño cumple con la muy importante tarea de ofrecer las condiciones para que se lleven a cabo diversos procesos de restauración y de reorganización neuronal así como el procesamiento de información y consolidación de la memoria. La ausencia de sueño interfiere con estos procesos con el consecuente deterioro de la conducta adaptativa del sujeto. El insomnio es un trastorno que deteriora de manera importante la calidad de vida de las personas que lo padecen. Afecta aproximadamente al 10% de la población. El insomnio se presenta en diversas formas. La clasificación internacional de los trastornos del dormir considera 11 tipos de insomnio. Entre ellos, el insomnio psicofisiológico representa el tipo de insomnio que más frecuentemente se manifiesta en la población. Se trata de un padecimiento donde el paciente desarrolla una aversión a dormir y a todo lo que se relacione con ello. Este tipo de insomnio tiene un componente de estrés que precipita la aparición del insomnio y puede contribuir a los elementos que ayudan a perpetuarlo (insomnio crónico). Se han desarrollado diversos modelos animales para el estudio del estrés y sus consecuencias. Por ejemplo, el estrés temprano inducido por privación del cuidado maternal. Asimismo, por inducción de estrés en la madre (rata) gestante. Sin embargo, se han explotado poco para evaluar el insomnio y mejor aún, para ensayar fármacos que puedan beneficiar al paciente insomne. A pesar de contar con una gran variedad de medicamentos hipnóticos, en la actualidad no existe un hipnótico ideal. Los tratamientos más efectivos con los que contamos conllevan riesgos importantes de tolerancia, adicción y potencialmente efectos colaterales. Por ello, la búsqueda de nuevos fármacos con propiedades inductoras de sueño es inaplazable. Especialmente de fármacos que sean capaces de inducir las fases de sueño delta y sueño MOR sin causar sonambulismo, somnolencia residual y/o efectos negativos en la memoria. En este contexto se discute el potencial uso terapéutico de los endocanabinoides (eCBs), ya que son ansiolíticos e inductores de las fases profundas de sueño (delta y sueño MOR). Los eCBs son moléculas endógenas que tienen una actividad semejante a la de la mariguana. Esto es debido a que tanto la mariguana como los eCBs afectan a un mismo receptor, que es el receptor canabinoide 1 (CB1). Los eCBs tienen un potencial terapéutico que hasta ahora no se ha explotado en beneficio de los pacientes que sufren de insomnio y/o ansiedad. Por ello, en esta revisión se analiza el insomnio desde el punto de vista clínico, se detallan sus características para que el médico clínico no experto pueda reconocerlo y potencialmente tratarlo; también se persigue subrayar la influencia potencial del estrés en la fisiopatogénesis de este trastorno. A pesar de que hay cada vez más información acerca de la síntesis y degradación de los eCBs (lo que es muy importante porque estos mecanismos pueden ser afectados por fármacos que inhiban la degradación o la faciliten, dependiendo de las necesidades terapéuticas) no discutiremos estos temas que se vuelven más especializados. Sin embargo, es importante que se conozca y se discuta su posible uso para beneficio del paciente. Esta revisión se centra en discutir los potenciales beneficios causados por la activación del receptor CB1 en el paciente insomne para reducir su dolencia de mal dormir.

10.
Salud ment ; 33(6): 535-542, nov.-dic. 2010.
Article in Spanish | LILACS-Express | LILACS | ID: lil-632813

ABSTRACT

In this second paper of the Brain, Drugs and Genes review we would like to discuss illicit drugs and the genetics that may predispose subjects to addiction. We describe the effects, action sites and pathophysiological consequences of the use of these illicit drugs. The drugs that are reviewed are marijuana, heroin, cocaine, methamphetamine and 3,4-methylenedioxymethamphetamine or MDMA, also known as ecstasy. All of them cause an effect on the brain, modifying the activity of the neuronal systems, altering the activity or availability of the neurotransmitters or emulating their actions. The risk of dependence is related to the velocity with which these drugs induce plastic changes in the brain, very much like a learning process. Such changes underlie the patient's dependence to drugs. Therefore when a long term user quits and deprives the brain abruptly of these drugs, an abstinence syndrome is precipitated and it may be quite severe. Only for marijuana it seems to be mild, misleading people to believe this drug does not cause physical dependence. Marijuana (Cannabis sativa) is a plant which has its active principle A9-tetrahydrocannabinol (THC) in almost all its parts, i. e. the flowers, stems, seeds and leaves. It actually contains over 60 cannabinoids as well as other chemical compounds. Marijuana causes euphoria followed by relaxation and several other reinforcing effects. Among the adverse effects marijuana causes: alteration of short-term memory, slowness of reflexes, depression and anxiety, bronchitis and lung infections. Marijuana effects depend on the activation of the CB1 and CB2 receptors, distributed in the entire body. The CB1 receptor is mainly present in the brain. In medicine, A9-THC has been useful in treating symptoms caused by chemotherapy, and in treating the anorexia caused by the Acquired Immune Deficiency Syndrome. Also, an antagonist of the CB1 receptor, Rimonabant, has been used to treat morbid obesity with certain degree of success. However, despite this promising application of Rimonabant, the side effects it caused led to its withdrawal from the market in Europe, Canada and Mexico. Heroin, derived from morphine, which in turn is isolated from opium, causes euphoria and analgesia, suppresses hunger, increases energy and induces sleepiness. The adverse effects are liver and kidney diseases as well as a decrease in breathing and heart rates. This drug acts on the opioid receptors: MOR, DOR and KOR. Cocaine, derived from the coca plant (Erythroxylum coca) produces immediate rewarding effects that last between 30 to 60 min, and causes anxiety once its serum concentration drops. Due to its very short half-life, it is the most addictive of all drugs. Cocaine reduces hunger, thirst and sleep. The most used forms of cocaine are powder and crack (available as rock). The mechanism of action by which cocaine and related compounds induce their effects is the blockade of the dopamine transporter at the synapsis, leaving dopamine available for a longer time at the synapses of the motivation-reward system. Cocaine and related compounds induce blood vessel constriction, muscular spasm, chest pain, and an increase in heart rate and blood pressure, thus augmenting the risk of cardiac arrest and stroke. The methamphetamine, a synthetic stimulant, is a crystalline, odorless, bitter drug which causes a pleasant feeling and euphoria. Its action mechanism is the blockade of the dopamine transporter, same as cocaine. The effects pursued by the users of crystal methamphetamine are increased alertness, increase in physical activity and decrease in hunger. Its side effects include increase in body temperature, heart rate and blood pressure, thus augmenting the risk for stroke. Methamphetamine also triggers violent behavior, anxiety, irritability, confusion, paranoia and hallucinations. This compound has been used for medical reasons, such as in the treatment of narcolepsy and obesity. 3,4-methylenedioxymethamphetamine, MDMA or ecstasy, is a synthetic compound with stimulant and hallucinatory effects. Its action is exerted mainly on the serotonin transporter, leaving serotonin available at the synapsis for a longer time. After clearance from the bloodstream this drug causes severe depression. Ecstasy is also combined with other stimulants. All the drugs discussed here induce body changes that compromise the life of the user, or his health at the very least. Despite this fact, the highly reinforcing effects the drugs produce by over activating the motivation-rewarding system compel their repetitive use. Not all users, however, are equally vulnerable to becoming addicted or respond the same way to the use of drugs. The individual response depends, in part, on genetic factors, as we discuss in the following section. It is evident that not only environmental factors account for the vulnerability to addiction. Genetic factors also have a substantial contribution. In order to facilitate the understanding of the interaction environment-gene, we define the following concepts: gene, allele, mutation, polymorphism, heritability and epigenesis. Apparently, the genetic contribution to addiction vulnerability varies depending on the drug. For example, cocaine and opiates are much more dependant on genetic factors to trigger addiction than are nicotine, alcohol or marijuana. Mutations or polymorphisms carried by several genes might make the difference between being at high or low risk for addiction. They may also underlie the degree of response to rehabilitation treatments. Addiction, then, is a result of an interaction between environment and genes. Environmental demands make the organism modify its structure and physiology in order to cope efficiently to such demands. One crucial way to do so is by changing gene expression. Changes in gene expression may be a consequence of chemical rearrangements in the chromatin structure, which lead to transcriptional modifications that affect the expression of the proteins the genes encode. Consequently, the normal functions of such proteins in different systems are also altered. These adaptive rearrangements in the chromatin structure are called epigenesis. The epigenetic changes induced by environmental stimuli have been proved to affect the expression of several neurotransmitter receptors and trophic factors, among many other molecules crucial for the proper functioning of the Central Nervous System. Hence, these chromatin's structural changes, triggered by environmental demands, are most likely to help the subject cope with such specific demands. However, this adaptation is not free of charge, and requires a toll to be paid which is: vulnerability to addiction. Finally, one question arises: Who is the person most likely to seek a drug of abuse? Statistics have shown that those patients suffering from a psychiatric illness. This hypothesis suggests that addiction is a symptom or a disease caused by a psychiatric illness such as a personality disorder, depression or schizophrenia. Hence, at the end, drug addiction would be a co-morbid entity, generating what in Spanish we call the dual-disease. On the other hand, the self-medication hypothesis also makes sense, at least for an extensive group of patients. This hypothesis suggests that patients take drugs of abuse to relief the symptoms caused by their psychiatric pathology. The present review discusses the interaction between brain circuits, drugs and genes to generate an addict patient. We do not intend to revise each field exhaustively, but rather we intend to give the reader a general scenario on the convergence of these three worlds. Thus it may be better understood how addiction develops and how it may be treated.


En este segundo artículo sobre el tema reseñamos brevemente las drogas de abuso ilícitas. Describiremos también cómo la genética contribuye en forma importante en el desarrollo de la adicción. La marihuana (Cannabis sativa) es una de las drogas más populares entre los jóvenes. Se presenta para su consumo en dos formas: hachís, como un triturado de la planta seca y como aceite. Una vez consumida, sus efectos tardan en aparecer según la vía de administración. Por ejemplo, cuando se inhala, sus efectos aparecen en unos cuantos segundos. Después de que el principio activo de la marihuana (A9-THC) llega al cerebro y se une a sus receptores (CB1), produce euforia seguida de relajación, se perciben más intensamente los olores, los sabores y los sonidos y parece que el tiempo pasa lentamente. Su consumo, al igual que todas las drogas de abuso, tiene efectos adversos. Sin embargo, la marihuana cuenta con un potencial uso en la medicina por sus propiedades antieméticas, orexigénicas y analgésicas. La heroína es derivada de la morfina (ingrediente activo del opio, Papaver somniferum). El opio se fuma o se utiliza como un extracto disuelto en alcohol (láudano), y la heroína se aspira o fuma. Sus efectos aparecen rápidamente e incluyen euforia, aumento de la energía, supresión del hambre, analgesia y somnolencia. La heroína, así como el opio y la morfina, ejercen su efecto a través de los receptores opioides. Su consumo deteriora el hígado, los riñones, los pulmones y el corazón. La cocaína (Erythroxylum coca) es una droga estimulante altamente adictiva. Al consumirla se experimenta mejoría de la autoestima y la auto-confianza, acompañada de excitación. Estos efectos son inmediatos y duran entre 30 y 60 minutos y son consecuencia de la inhibición de la recaptura de dopamina. Adicionalmente la cocaína inhibe el apetito y el sueño. Sus efectos adversos son la contracción de los vasos sanguíneos, espasmos musculares, dolor de pecho, embolias o derrames cerebrales, aumento en la frecuencia cardiaca y muerte. La metanfetamina se sintetiza fácilmente a partir de la anfetamina (derivado de la efedrina), lo que facilita su fabricación en laboratorios clandestinos. Cuando se fuma o se inyecta por vía intravenosa produce una sensación sumamente placentera (<

11.
Salud ment ; 33(5): 451-456, sept.-oct. 2010.
Article in Spanish | LILACS-Express | LILACS | ID: lil-632830

ABSTRACT

The pleasant sensation experienced when, for example eating or having sex is regulated by the motivation-rewarding system. This rewarding sensation makes the subject to repeat the behavior in order to obtain the reinforcer once more. This system can be corrupted by drugs of abuse by triggering an «intense feeling of pleasure¼ and inducing plastic changes. In normal conditions, a natural reinforcer is a stimulus generating a benefit to the organism. For example, food will provide energy and structure among many other benefits. Sex, in turn, accomplishes the function of giving new beings to the species and to create boundaries between subjects to generate groups and culture. Due to these facts, it is crucial to reinforce this kind of behaviors. They are crucial for the subject's life. In contrast, drugs do not produce any benefit to the subject or group. Although in ancient times human beings used drugs as a means to develop and practice their mysticism, such practice is no longer associated with the use of drugs. With the exception of present time aboriginal communities, none of the regular users in our countries consume drugs with ritual-mystical purposes. Hence, we have to accept that drugs are of no use for human beings. They do not help us as species to have more adapted, intelligent or developed subjects in our communities. However, their ability to stimulate the rewarding system makes them popular and dangerous to the individual's health and life. The motivation-rewarding system is regulated by numerous neurotransmitters, among them dopamine, that is released in the nucleus accumbens (NAc) and synthesized by the neurons located in the ventral tegmetal area (VTA). There are other substances that modulate the activity of the dopaminergic neurons in the VTA, such as serotonin, acetylcholine, gamma-aminobutyric acid (GABA) and glutamate. The activation of the VTA and its consequent activation of the NAc enhance the release of neuromodulators such as endorphins and endocannabinoids, thus generating the subjective sensation of pleasure. All these interactions trigger the activity of memory systems generating a memory trace encoding the characteristics of the substance or behavior causing pleasure. This occurs in the context that the brain accepts these substances or behaviors as beneficial to the organism. The punishment system is also a very important system working in tight communication with the pleasure system. Fear is one of the most critical adapting behaviors for any subject in the animal kingdom. Fear helps us to avoid dangerous stimulus and behaviors. There is also pleasure involved in escaping this kind of situations. It seems like there is an interaction between the motivation-rewarding and the punishment systems. As a result, there is a balance at times in favor of pleasure, at times in favor of punishment depending on the quality of the stimulus. This balance gives the valence to the emotion triggered by the stimulus. A stimulus with a positive valence will increase the probability of exhibiting the behavior displayed to obtain it, while a stimulus with a negative valence will increase the probability of exhibiting the behavior displayed to avoid it. In this context, the so-called non-natural reinforcers such as drugs of abuse act directly on the pleasure system. For example, nicotine acts on the nicotinic receptor of ACh, alcohol, on the receptor of GABAa and glutamate (NMDA), marihuana on the endocannabinoid receptor (CB1 R), located in the motivation-rewarding system triggering an «intense sensation of pleasure¼. However, two main shortcomings make drugs of abuse dangerous: first, their effect is short and, second, they do not convey any beneficial effect to the organism whatsoever. Brain mechanisms not very well defined detect this lack of benefit; hence, the motivation-rewarding system reduces its response by means of at least two plastic changes, reducing the availability of receptors (epigenetic changes induced by the drug) and by increasing the activity of the punishment system to maintain the balance. As a result, the subject does not experience the same pleasure with the same dose of the drug. In the clinic we call this phenomenon tolerance. If the individual insists in pursuing the same intensity of pleasure, he/she has to consume more of the drug, forcing the brain to strengthen its plastic changes. In this context, we can say that these systems are defending themselves against the action of the drug. Then, why do subjects insist in pursuing the effect of drugs? Very likely because the substrate of the subject's disorder resides anywhere in the brain but in the pleasure system. If so, this indicates that drug addiction is a disorder caused by another disease, very likely a psychiatric one. Several factors contribute to generate drug addiction, i. e. social, psychological and genetic. Genes contribute in different ways to generate the subject's vulnerability to suffer an addiction. A gene mutation (alteration in genetic information) or a given polymorphism (the existence of multiple alleles of a gene in a population) can produce a dysfunctional protein or alter its normal levels. Such changes may make some individuals vulnerable to the initial use of drugs of abuse. However, those genes facilitating adjustments in the motivation-rewarding system that occur after the repeated consumption of drugs of abuse seem to be functioning normally, as we can infer from the development of tolerance. The heritability of these genes, making subjects vulnerable to addiction, has been studied in many ways, including studies of families, adoptees, and twins (monozygotic and dizygotic). From these studies it has been possible to calculate the heritability index, a measure which indicates how much variance of a trait in a specific sample is associated to genetic factors and how much to the environment. The heritability index has a range from 1, meaning the maximum genetic influence, to 0, meaning the maximum environment influence. At present, a significant number of genes have been involved in facilitating addiction to drugs, and also very important, to the response to treatment for rehabilitation. The expression of the genes is regulated by a series of processes called epigenesis. Epigenetic changes can be a result of the interaction between genes and environment. This interaction results in chemical processes that modify chromatin structure. For example, cytosine nucleotide methylation causes chromatin condensation, which interferes with gene transcription; hence, the protein encoded by this gene will be reduced, and the function in which it participates will be altered. As an example, when the methylation of the gene encoding for the glucocorticoid receptor occurs in rats, it reduces the bioavailability of this receptor and increases the release of corticosterone when rats are stressed. At the behavioral level, rats seem to be more stressed most of the time as compared with rats without methylation of this gene. Almost every stimulus in the environment is a potential promoter of epigenesis. Epigenesis is important to occur, since it is an adaptive response of the organism to the environment. It seems like the switches of the genes are turned on or off according to environment circumstances. These genetic changes will be ultimately expressed as plastic changes pursuing the right adaptation of the subject to the environment. Parental care seems to be one crucial contributor to these epigenetic modifications. For example, when a mother-rat provides poor care (feeding, grooming, and physical contact) to its litter during the neonate period, facilitates the methylation of genes, as it has been proved for the glucocorticoid receptor. These changes generate subjects with poor stress management and less capability for learning. Likewise, it makes them susceptible to drug addiction. These results highlight the importance of parental care as provider of a healthy environment, which is modeling the expression of their genes, hence their behavior.


La definición de adicción propuesta por la Organización Mundial de la Salud, dicha de manera sucinta, indica que es una enfermedad cerebral que provoca una búsqueda compulsiva de la droga y su uso, a pesar de las consecuencias adversas que ésta provoque. La fisiopatología de la enfermedad sugiere una interacción entre mecanismos cerebrales, cambios genéticos y medio ambiente. El objetivo de este artículo es discutir la evidencia que existe sobre los sistemas cerebrales que son afectados por las drogas, qué genes participan y cómo el medio ambiente tiene una participación crucial para generar esta enfermedad. Discutiremos tres secciones: el cerebro, las drogas y los genes. La primera trata sobre cómo el cerebro responde ante estímulos reforzantes y cómo estos sistemas cerebrales promueven que el individuo repita la conducta que lo llevó a adquirir el reforzador originalmente, para obtenerlo de nuevo. A este sistema se le denomina sistema de motivación-recompensa. Este sistema responde muy activamente ante reforzadores naturales (estímulos que buscan preservar la vida del individuo), pero también a reforzadores no naturales. En este grupo de estímulos están las drogas de abuso. El sistema de motivación-recompensa está modulado por diversas estructuras subcorticales y corticales que incluyen un sistema de castigo. Estos sistemas util izan una gran diversidad de neurotransmisores y neuromoduladores que inducirán una sensación de placer ante la presencia del estímulo reforzante. Todas las drogas de abuso provocan un efecto sobre los receptores y sobre los transportadores de los neurotransmisores, al igual que sobre las enzimas que participan en la síntesis y degradación de estos mediadores químicos. El uso repetido de la droga modifica así estructural y funcionalmente al cerebro. Estos cambios plásticos desarrollados en el sistema de la motivación-recompensa y también en el de castigo, provocan un nuevo balance entre ellos que lleva al individuo a un estado de alostasis, en el cual la droga se convierte en una necesidad. En otro artículo haremos una reseña sobre drogas lícitas e ilícitas; sus efectos, sus sitios de acción y las consecuencias adversas de su uso. La última sección versará sobre la genética: definimos los conceptos de gen y alelo, de mutación y polimorfismo, heredabilidad y epigenética, a fin de entender qué hace a un individuo vulnerable a la adicción de una droga de abuso. Si bien para la adicción existe una contribución ambiental, la contribución genética es importante. Esta contribución no es igual para las diferentes drogas. La cocaína y los opiáceos, no solamente son las drogas más adictivas, sino también las que mayor contribución genética tienen en comparación con otras (v. gr. nicotina, alcohol o marihuana). Los polimorfismos en diversos genes hacen vulnerable a un cerebro para convertirse en adicto a alguna droga o, por el contrario, dificultan la eficiencia de los tratamientos en contra de la adicción. Entre los polimorfismos que se han descrito son de interés los genes que codifican para las enzimas hepáticas citocromo P450, ya que estos polimorfismos modifican la vulnerabilidad para la adicción al tabaco, al alcohol y a la heroína. Es menester considerar la influencia genética en la adicción puesto que las variaciones a este nivel harán responder diferencialmente al tratamiento a personas con el mismo tipo de adicción. Por ello, hay que enfatizar el uso individualizado de la terapia. Por último, planteamos que quienes buscarán con mayor probabilidad el uso de una droga son quienes presentan una enfermedad psiquiátrica de fondo, así que la adicción representa sólo una parte de una enfermedad dual o comorbilidad. En este contexto, la hipótesis de la automedicación sugiere que los pacientes buscan la droga con el fin de controlar su patología inicial. Esta revisión busca integrar la interacción entre el cerebro, las drogas y los genes, pero no pretende ser exhaustiva. Nuestro interés es dar un panorama al lector sobre cómo estos tres mundos convergen, para entender cómo ocurre esta enfermedad y tratarla diferencialmente entre los individuos.

12.
Salud ment ; 29(5): 49-58, Sep.-Oct. 2006.
Article in Spanish | LILACS | ID: biblio-985976

ABSTRACT

resumen está disponible en el texto completo


Abstract: In the first part of this work we reviewed the hippocampus and striatum anatomy and function in the context of the memory systems. In this second part we describe the anatomic and physiologic basis of the memory systems represented by the amygdala and prefrontal cortex (PFC) and their participation in the expression of strategies for the solution of specific problems. Amygdaloid formation is divided in three principal regions, the baso-lateral nucleus, the superficial nucleus, and the centromedial nucleus. Amygdala is highly connected with several regions of the brain including hippocampus, striatum and PFC. Amygdala has been implicated in the processing, storing and retrieval of emotional information. Another function proposed for the amygdala is to modulate the activity of structures such as the hippocampus, the striatum and the cerebral cortex. The participation of the amygdala has been shown in different tasks such as the Morris water maze, the radial maze, the passive avoidance task, and the freezing behavior among others. In some of these studies it has been shown that the activation of the amygdala enhances the acquisition of the task. When the amygdala is activated pharmacologically it is able to enhance the acquisition of hippocampus or striatum related tasks. In these context, the efficiency of the amygdala activation depends on the synchrony, the precise time, at which it occurs in relation to the event the subject is learning. This is, either immediately before, during or immediately after learning. In support of this enhancing role of the amygdala, some electrophysiological studies have shown that the activation of the amygdala facilitates the development of LTP in the hippocampus while its lesion decreases it. On the other hand, it has also been shown that the amygdala activation increases c-Fos expression in both, the hippocampus and the striatum. In summary, the amygdaloid formation has been proposed as an enhancer of learning, representing the emotional component of the response to the environment. PFC is the other structure involved in the generation of strategies. It has been related with the correct functioning of higher functions such as memory, attention, emotion, anticipation and planning. It has been called the central executor for its fundamental role as a coordinator of past, present information and future performance. It is been proposed as responsible for the so called working memory, that allows to put together different kinds of information at the same time, giving the chance of comparing, selecting and generating a goaloriented behavior. Working memory has been studied with many different techniques, however electrophysiological experiments have shown interesting aspects of its functioning. Recording cells from the PFC of monkeys, Goldman-Rakic showed that these cells remain firing in a short period of time when visual information should be retained to be used in ulterior comparison task. This cell activity suggests that these neurons would be responsible for the maintenance of information in our "mind" a short period of time. These results have been replicated in humans by using real time imaging techniques as fMRI and PET. Again, during the periods of retention of the information, the activity on prefrontal areas increase until such information is used. Besides working memory, anticipation is another important function regulated by the PFC. Several studies have shown that the activity of prefrontal cortex increases before the performance, it seems like the prefrontal cortex predicts the actions in the environment and readily generates a strategy to efficiently act in response. PFC is connected reciprocally with the hippocampus, the striatum and the amygdala, the relation between these structures is under heavy investigation. Regarding the hippocampus, some interaction has been observed, and it has been proposed an interaction between these structures for the long term consolidation of memory. As for the striatum, the relationship with PFC has been studied preferentially with the ventral striatum or nucleus accumbens with respect to reinforcement of behavior. We understand poorly the relationship with the dorsal striatum. The relation between amygdala and PFC, on the other hand, has been studied in relation to the expectancy of the reinforcement. This is defined as the representation in the mind of the reinforcement and the association of that representation with the conditions under which it was delivered. In simple words, this is a way to explain how is that a subject prefers a specific reinforcer over another. It has been shown that lesions of the basolateral amygdala as well as PFC interfere with the expectancy of reinforcement. The function of the amygdala in this case is to provide the emotional component related to the presence of the reinforcement. An extensive literature has addressed the question of circadian variations in the release of neurotransmitters. For example, the diurnal variations in the release of acetylcholine in the hippocampus and PFC. The binding for acetylcholine, serotonin and norepinephrine to glutamatergic hippocampal cells is different depending on the light-dark cycle, suggesting that the modulation of the hippocampus by these neurotransmitters is different depending on the presence or absence of light. In this review, we have devoted special interest to the influence of the light dark cycle on these mnemonic systems and on goaloriented behaviors. We analyze selected papers from the available literature on circadian rhythms and memory, emphasizing the hippocampus role. We believe that the study of this relationship (brain/light-dark cycle) could be a useful tool to understand how the environment influences behavior. On this topic, there's evidence that the learning of a task may be different depending on the part of the day when it was learned. For example, it has been shown in humans that when subjects are submitted to explicit or implicit task the performance is different depending on the hour of the day, being better during the light for the explicit memory and better during the dark for the implicit memory. Studies in rats trained in fear conditioning tasks, showed that subjects learn the task easily when they are trained during the light phase of the cycle and the learned behavior showed a higher resistance to extinction. Conclusión. When a subject is confronted with a specific problem, he/she can find the solution by using different strategies. The expression of one of those strategies depends on the interaction of the different memory systems, these systems process and storage different kinds of information, and this information is useful to generate and exhibit a given strategy. The memory systems are constantly under the influence of the environment, one critical component of this environment is the lightdark cycle, which apparently is modulating the activity of these structures. As a result of the influence of the light-dark cycle on these structures, the behavior of the subject would be modulated as well. All these interaction just for the sake of adaptation, survival, and reproduction in this rotating and translating world.

13.
Salud ment ; 29(4): 18-24, Jul.-Aug. 2006.
Article in Spanish | LILACS | ID: biblio-985962

ABSTRACT

resumen está disponible en el texto completo


Abstract: The ability to abstract, store and recover information from the environment in order to generate new strategies to solve problems is one of the most important qualities of the human brain. We mean by strategy, the sophisticated way to solve a problem. A strategy represents in essence the refinement of a given behavior to solve a problem. A strategy could be generalized to solve different problems. The generation of strategies is subjected to the correct functioning of the brain, meaning, alertness, attention, memory among others brain processes in good stand. In this work we focus on the role of memory in the generation of strategies. In this context, we focus on the literature concerning to memory systems, to show that different memory systems process and store different kinds of information. Therefore, the generation of a given strategy would require the participation of one system instead of other, or at least, one system would be commanding over the others. A memory system is defined as neural network consisting on a central structure communicated through afferences and efferences with others. The ones conveying information to this central structure would provide information from the internal or external environment to be interpreted and stored; while the ones that receive information from the central structure would execute its commands. Curiously, the role of central structure can be played by one structure "A" that in other conditions was under the control of a structure "B". In this condition, "B" is under the control of "A". In this review we sought to describe the anatomic and physiologic basis of the memory systems and their participation in the expression of strategies for the solution of specific problems. In this first part, we review the literature concerning to the hippocampus and striatum. Our endeavor was to make a synthesis of the main components of the functional neuroanatomy of memory and of its specific participation in the generation and expression of strategies, and also of the influence of the light-dark cycle on the strategies resulting from the interaction of these structures. In this review we focus mainly on the basic description of memory systems and on the data obtained from intact rats and of others with lesions and subject to electrophysiological experiments. Many studies reviewed on this first part confront subjects to situations where different solutions can be performed; basically this studies are conducted on mazes were the subject can use different kinds of information for spatial orientation. Depending on the nature of the information available or selected by the subject, investigators may infer the kind of strategy the subject is using to solve the problem. From this background, concepts such as stimulus-stimulus strategy and stimulus-response strategy have been generated. The first one consists of making associations between neutral stimuli, to make a conceptual map that guides the subject toward his/her objective. It has been related with the hippocampus function and it has been classically related to the processing, interpretation, and storage of contexts and events as well as to spatial navigation. We center our attention on studies carried out in mazes, showing that lesions or temporal inactivation of the hippocampus disturb the capacity of orientation by using spatial cues. We also review studies where the expression of spatial strategies is correlated with preferential activation of hippocampus detected with different techniques such as immuno-histochemistry and mycrodialisis in vivo. The stimulus-response strategy, on the other hand, consists on making associations between a particular stimulus and the immediate consequence of its presence. This kind of strategy has been related with the striatum, particularly with its dorsolateral region. For this section we discuss studies where lesions or inactivation of the dorsolateral striatum were performed, on rats submitted to tasks where the solution could be achieved by using stimu-lus-stimulus or stimulus-response strategy. In subjects with striatal dysfunction the ability to perform using a stimulus-response strategy was disrupted but not the ability to use a stimulus-stimu-lus strategy. In addition, we revise studies where the expression of the stimulus-response strategy is correlated with a preferential activation of the striatum over hippocampus. We additionally discuss the interaction hippocampus-striatum to solve a spatial task. We make special emphasis in describing the hippocampal and the striatal systems as independent systems that process and store different kinds of information; therefore, they seem to alternate their activity depending on the demand of the environment. This means that if a stimulus-stimulus strategy is required, the hippocampus will govern the response of the subject, increasing its activity that will be over the activity of the striatum. The opposite will occur if a stimulus-response strategy is required. Studies in humans and rats have been performed to understand the interaction between hippocampus and striatum with similar results. Apparently hippocampus appears more active during the first stages of learning, leading behavior and being expressed as stimulus-stimulus strategy. Later, in learning, the hippocampus decreases in activity and the striatum increases, thus becoming the leader structure. This later activation of stria-tum has been related with the phase of learning when the task is mastered and is starting to become a habit. Finally, we devoted special interest to describe the influence of the light dark cycle over these systems and over the goal-oriented behavior. And as we will see on the second part of this review, the functioning of these structures may be regulated by the light-dark cycle. We will review the influence of the presence or absence of light on neurotransmitters release. We will give evidence indicating that the neurochemical modulation depends greatly on the influence of the light-dark cycle and that it results obviously in a different activity of these structures and hence the behavior. In conclusion, when a subject is confronted with a specific problem, he/she can find the solution by using different strategies. At present, we can not say which are the mechanisms responsible for the selection of a particular strategy at a given mo-ment, but we can say that the expression of any strategy depends on the activity of structures such as the hippocampus and the striatum. In theory each structure represents a memory system or a fundamental part of a memory system. The interaction of the different memory systems, produce a scenario were each system provides, processes, and stores different information about the environment, and this information is useful to generate and exhibit a given strategy. On the second part of this review we will focus on the func-tioning and participation of the amygdala and prefrontal cortex, and the influence of the environment on the memory systems.

14.
Salud ment ; 24(4): 58-64, jul.-ago. 2001. ilus, CD-ROM
Article in Spanish | LILACS | ID: lil-309640

ABSTRACT

La mariguana es uno de los productos ilícitos de abuso que más se usa en el mundo. Los mecanismos por los cuales afecta al cerebro se han estudiado exhaustivamente en los últimos 40 años, pero se han entendido mejor en la última década. Por ejemplo, conocer los receptores a los que se une la mariguana ha sido un gran descubrimiento en el área de las neurociencias. Asimismo, la descripción de ligandos endógenos, los endocanabinoides, ha arrojado luz para entender la fisiología cerebral que regula desde el dolor hasta el placer y desde el sexo hasta el pensamiento.Por todos estos efectos, los endocanabinoides son un tema de estudio con fines terapéuticos.


Subject(s)
Cannabis , Marijuana Abuse , Cerebrum , Cannabinoids
15.
Salud ment ; 22(2): 49-65, mar.-abr. 1999. ilus, tab
Article in Spanish | LILACS | ID: lil-254583

ABSTRACT

Se ha observado una variedad de trastornos neuropsiquiátricos entre 20 y 30 por ciento de los pacientes que padecen del síndrome de inmunodeficiencia adquirida (SIDA). Debido a que las neuronas no se infectan directamente con el virus de la inmunodeficiencia adquirida (HIV), las manifestaciones fisiopatológicas de la demencia asociada con el SIDA (ADC) podrían estar relacionadas con mecanismos indirectos. La glucoproteína 120 de la envoltura viral (gp 120) derivada del VIH parece desempeñar un papel importante en el desarrollo de la ADC. Una cantidad cada vez mayor de experimentos han indicado que las concentraciones nanomolares de la gp120 derivada del VIH produce muerte neuronal in vivo, en tanto que las concentraciones picomolares matan a las neuronas in vitro. Los datos recientes sugieren que para inducir el daño neuronal, los receptores a citocinas y el CD4+ desempeñan un papel muy importante en la activación de eventos intracelulares que conducen a un incremento del Ca++ intracelular con la participación de los canales NMDA, lo que dispara los eventos intracelulares y la apoptosis. Entender el mecanismo del daño neuronal desde un punto de vista molecular y conductual, probablemente nos proporcionará el conocimiento para encontrar el tratamiento y la manera de prevenir esta complicación clínica. En esta revisión se incluye también el desarrollo de modelos animales para el estudio del mecanismo fisiopatológico de la demencia asociada con el SIDA


Subject(s)
Humans , Animals , AIDS Dementia Complex/diagnosis , AIDS Dementia Complex/physiopathology , AIDS Dementia Complex/immunology , HIV/ultrastructure , Receptors, Cytokine , Acquired Immunodeficiency Syndrome/complications , Acquired Immunodeficiency Syndrome/physiopathology , AIDS-Related Opportunistic Infections/complications , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL